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A method of isolating the regular solution from the numerical solution is proposed. 
The accuracy of solution according to explicit and implicit schemes is considered, 
and the applicability conditions are determined. 

Consider the nonsteady heat conduction in multilayer walls with boundary conditions of 
the third kind 
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The necessity of solving Eqs. (i)-(3) arises in the period of extremal winter and summer 
depredations of the external environment; for example, the temperature variation in the period 
of sharp cooling is represented by a parabolic trend with the superposition of random harmonic 
oscillations. The known analytical solutions [1-6] take no account of arbitrary initial con- 
ditions, since these conditions, generally speaking, are undetermined. Specifying uniform 
initial conditions [5, 6] leads to a solution consisting of two parts: in the first, account 
is taken of the initial conditions, whose influence dies away exponentially with time; and 
the second is the regular part of the solution, independent of the initial conditions. In 
[7], a semiempirical model was constructed for calculating the internal air temperature of 
buildings in winter; the calculated points were described as "calculation with incorrectly 
specified initial conditions," but at t > 26 h the numerical solution obtained practically 
coincides with actual observations, i.e., regular heat transfer uninfluenced by the initial 
conditions begins. Hence, in using any method to solve the system of heat- and mass-transfer 
equations for a building of the type in [7, 8]) the calculations must be performed in the 
region of regular heat transfer. 

For walls with different D 
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Treg is different; the possibility of using D as an approximate integral characteristic of 
the thermophysical properties follows from analytical solutions for regular temperature waves 
[1-6]. In connection with this, one further need to calculate Treg should be noted: repre- 
sentation of the external temperature in Fourler-serles form is expedient both in the analy- 
sis of numerical calculations and in obtaining analytical solutions, but prolongation of the 
intervals T is associated with rise in the number of terms in the series. Thus, when using 
meteorological data with an observation interval of 6 h, there are ten terms in the series 
when T = 120 h) but only two when T = 24 h. Therefore, for walls with different D, in cal- 
culations of the nonsteady heat transfer, it is expedient to use time series for the external- 
air temperature of different lengths. 
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In view of the linearity of Eq. (i) and the boundary conditions in Eqs. (2) and (3), 
the heat transfer with u I = const may be investigated, and u E may be specified by only one 
harmonic of the Fourier-serles expansion of the external-air temperature 

u E = uo + Ao cos ~t. (4)  

This linear problem may b e  regarded as consisting of two: one with arbitrarily specified 
initial distribution of the temperature uo and wlth u I = const, u E = Uc; and the other with 
zero initial distribution, uo = 0) zero temperature of the internal medium, and external 
temperature varying according to the law 

u~ = Ao cos ~t. (5) 

As calculations show, ~reg for the second problem is larger than Xreg for the first when 
linear initial distributions varying over broad limits are specified, corresponding to the 
possible combinations of external and internal temperatures of the medium typical of external 
walls. Therefore, Treg is investigated for Eq. (1) with the conditions 

ou[ = E<u--Aocoso0,--  ~ =--oiu ,  u(x, o ) = o  <6> 
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The solution for the internal-surface temperature in the region of regular heat transfer is 
written in the form [9] 

u = A c o s ~ t + B s i n ~ t .  (7) 

A procedure for calculating Xreg in the case of numerical solution of gq. (i) with the 
conditions in Eq. (6) has been developed. Suppose that, for times ti...ti+j...ti+k_1, the 
temperature values at the internal surface of the wall are found. To determine A and B by 
the method of least squares, these k points are approximated b~ a curve of the form in Eq. 
(7). At each point i + J, it is required that I(u -- ui+J)ui+j|~. r when this condition is 
satisfied for all i + J, the Treg corresponding to =i is taken as the time of onset of regular 
heat transfer at the internal surface of the wall. In the calculations, the remote points 
were subject to approximation. For example, with a time step T = O.OO1 h, points 1 h apart 
were chosen, and k was in all cases set equal to ten. Thus, in each hour, the last ten tem- 
perature values were approximated by the curve in Eq. (7). Specifying the relative condition 
of convergence ensures that Treg will be independent of the value of Ao in Eq. (5). 

Equation (i) is approximated by the difference equation [lO] 
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This difference equation has an accuracy O(x + ha); the boundary condiglons of the third kind 
are also approximated with an accuracy O(x + ha). 
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The system in Eq. (8) is solved by the trial-and-error method. Since the calculation 
time with respect to t is no less than rreg) there arises the question of the cholce of time 
step. Although the implicit scheme is absolutely stable) a constraint must be imposed on T) 
when t z Treg) to increase the accuracy, i.e.) the convergence of the numerical solution when 
t > Treg to the solution corresponding to regular heat transfer. The constraints on the 
step T to meet this requirement are approximately the same as the constraints on the step 
in the explicit scheme. 

Table 1 gives the results of calculations for periods T corresponding to Fourler-serles 
expansion of the time series of the temperature of length 120 h. The results are compared 
with respect to the nonstationarity coefficient ~ = At/~IR [8]; from Eq. (7)) A t ffi (A ~ + Be) ~/a 
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TABLE i. Values of ~ for a Wall with D = 1.21, Bi E = 
5.05, Bi I = 1.08 

120 
60 
40 
30 
24 
20 
17,1 
15 
13,3 
12 

Accurate 
solution 

0,9981 
0,9923 
0,9829 
0,9701 
0,9542 
0,9356 
0,9145 
0,8916 
0,8712 
0,8414 

Explicit scheme 

T=~m/lO T ~ T .  m 

0,9992 
0,9969 
0,9931 
0,9879 
0,9812 
0,9732 
0,9039 
0,9534 
0,9419 
0,9294 

Implicit scheme 

I "~=lh 

0,9982 
0,9928 
0,9840 
0,9720 
0,9570 
0,9394 
0,9195 
0,8978 
0,8739 
0,8499 

0,9955 
0,9821 
0,9606 
0,9322 
0,8980 
0,8596 
0,8183 
0,7754 
0,7320 
0,6888 

I z=6h 

0,9828 
0,9359 
0,8705 
0,7988 
0,7308 
0,6722 
0,6260 
0,5930 
0,5733 
0,2334 

The minimum time step for a four-layer wall (Table i) is 0.0106 h; when v = i h, the nonsta- 
tionarity coefficient for T = 12 h is 30% less than that found for accurate solution [4]; for 
example, the step x = 1 h is taken in [9]; for �9 = 6 h, the corresponding reductionreaches 
70%. Thus, the results of the calculations show that using arbitrary time steps in calcula- 
tions by the implicit scheme may lead to considerable distortion of the temperature values 
on the internal surface of the wall. Decrease in the time step increases the time required 
for the calculations, and hence the explicit scheme would be expected to be more economical 
for the determination of Vreg. 

The difference equations for calculations by the explicit scheme [i0] are 

Yi = (1 - - A i -  Bi) y~ + A ~ - I  + Bib+l, (lO) 

and, omitting the computations, the difference approximation of the boundary conditions of 
the third kind may be written in the form 

2LI~ 
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This scheme is conditionally stable: T < Xm, the condition for asymptotic stability, 
coincides with the stability condition; calculations by Eq. (i0)are shown in Table i. 

The accuracy of calculations with T = T m in the explicit scheme is higher than for the 
implicit scheme with x = 1 and 6 h; increase in accuracy is achieved with reduction in the 
step T. Thus, at T = Tm/10 , A for $ of higher harmonics is improved; when s = i0 -" the error 
is =5.10 -s, which corresponds to an error of the temperature at the internal surface of the 
wall of =5"I0-~~ at low harmonics, the error (-10-) corresponds to an error in the temper- 
ature of ~I0-5=C. Increase in accuracy of the higher harmonics is achieved by further reduc- 
tion in x. At T = Tm/20 , ~ differs from the accurate value by 3.6.10 -s, which is three times 
less than at T = Tm/10; in this case, Treg rises by 2 h, and hence the error in determining 
Treg depends on the order of accuracy of the scheme and on the method of isolating the regular 
solution from the numerical solution. Thus, further improvement in accuracy with respect to 
the correct solution requires change in thegrid parameters, and selection of a more complex 
method of isolating the regular solution, which inevitably entails an increase in the computer 
time required. However, the adopted grid parameters and r = 10 -5 provide good agreement of 
the numerical and accurate solutions, while graphical means offer the possibility of deter- 
mining the limit of the region of regular heat transfer approximately, and show that, for the 
calculation of nonsteady heat transfer and hence for the choice of calculation temperatures 
for [ii, 12], the duration of the sharp rise (fall) in temperature is quite insignificant; in 
the boundary conditions, the behavior of temperature series no shorter than Treg determined 
for the given wall must be taken into account. 

In practical multivariant calculations, when the tlme interval is tens and hundreds of 
hours, the use of explicit schemes with a step of 10-s-10 -~ h is uneconomical. High harmonics 
make a small contribution to the Fourler-serles expansion of the extremal temperatures of the 
external air. Thus, in the expansion of 1940 minimum temperatures in Moscow over an interval 
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Fig. i. Time of onset of regular heat transfer in ex- 
ternal walls (generalization of the results of numeri- 
cal calculations with 1.24 ~ Bi E ~ i0, 0.46 ~ Bi I ~ 3.7, 
0.0524~ ~ ~ 0.524, e = 10-s). 

of 120 h, the amplitude of the harmonics (for the cosine expansion) with period T = 120 h is 
13.42~ while the amplitudes of harmonics with period T ~20 h is less than 0.4~ and, on 
passing through the wall, they make a contribution of =0.04~ to the temperature amplitude at 
the internal surface. Hence, in those cases where rapid calculation with a large step T = 
1-6 h is necessary, the use of the implicit scheme in Eq. (8) is expedient; in those cases 
where the high harmonics may distort the solution, it is necessary to decrease the step T and 
to use the explicit scheme in Eq. (10). Thus, calculation of a wall with D = 1.21 by the 
implicit scheme with T= 6 h gave minimum temperature 0.2~ higher than that calculated ana- 
lytically from the accurate solution [4] for the minimum u I in 1940 in Moscow. 

NOTATION 

x, coordinate; t, time; Z, wall thickness; ~J, thickness of J-th layer of wall; 7, dens- 
ity; I, thermal conductivity; c, specific heat; a, thermal diffuslvity; UE, heat-transfer co- 
efficient of external surface of wall; uI, heat-transfer coefficient of internal surface of 
wall; u, temperature; UE, temperature of external air; Uc, mean temperature of external air; 
ui, temperature of internal air; Ao, A, B, amplitudes; T, period; m - 2w/T, frequency; hi, 
grid step along x axis; i, number of grid point along x axis; ~, grid step along t axis; y, 
grid function; N, number of layers in wall; Treg , time of onset of regular heat transfer at 
the internal surface of the wall; Tm, maximum permissible step T in explicit scheme; 4, abso- 
lute error; Pd = lab/a, Predvoditelev number; Fo = aT/l a, Fourier number; Bi = u/(Icy~)~/2, 
generalized Blot number. 
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